Search results for "chemical shift"

showing 10 items of 205 documents

Structural, electronic and energetic effects in heterocyclic fluorene derivatives fused with a fulvene unit

2019

Abstract A set of 36 heterocyclic (B, N and O) fluorene (C) derivatives fused in nine ways with fulvene ring have been analyzed by means of different local aromaticity criteria. Molecular geometry of analyzed compounds were optimized at B3LYP/6-311++G(2d,2p) level of theory. The evaluation of the local aromaticity has been carried out through the use of the geometry-based harmonic oscillator model of aromaticity (HOMA) and the magnetism-based zz‐component of the nucleus independent chemical shifts calculated 1 A above the ring center (NICS1zz) indices as well as one aromaticity index derived from the Quantum Theory Atoms in Molecules (QTAIM), i.e. the para-delocalization index (PDI). Additi…

010304 chemical physicsChemical shiftAtoms in moleculesHeterocyclic fluorene derivativesHOMO-LUMO energy gapsAromaticityFluoreneFulvene010402 general chemistryCondensed Matter PhysicsKinetic energyRing (chemistry)01 natural sciencesBiochemistry0104 chemical scienceschemistry.chemical_compoundCrystallographyMolecular geometrychemistry0103 physical sciencesPhysical and Theoretical ChemistryFulveneAromaticity indexesComputational and Theoretical Chemistry
researchProduct

Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble …

2015

Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles …

010304 chemical physicsElectronic correlationChemical shiftNuclear TheoryKryptonchemistry.chemical_elementGeneral Chemistry010402 general chemistry01 natural sciences0104 chemical sciencesComputational Mathematicssymbols.namesakeNeonCoupled clusterchemistry0103 physical sciencesPhysics::Atomic and Molecular ClusterssymbolsDensity functional theoryAtomic physicsHamiltonian (quantum mechanics)Basis setJournal of Computational Chemistry
researchProduct

Nucleophilic iodonium interactions (NIIs) in 2-coordinate iodine(i) and silver(i) complexes

2021

The generality of nucleophilic iodonium interactions (NIIs) has been demonstrated by preparing a range of silver(i) and iodonium (I+) complexes and studying their 15N NMR chemical shifts, with the first example of a NII-complex involving a 2-coordinate silver(i) complex being confirmed by X-ray crystallography, and its nucleophilicity studied by DFT calculations.

010405 organic chemistryChemistryChemical shiftMetals and Alloyschemistry.chemical_elementGeneral Chemistry010402 general chemistryIodine01 natural sciencesCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsNucleophileComputational chemistryMaterials ChemistryCeramics and CompositesChemical Communications
researchProduct

Structural studies of homoisoflavonoids: NMR spectroscopy, X-ray diffraction, and theoretical calculations

2010

Abstract In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometri…

010405 organic chemistryChemistryChemical shiftOrganic ChemistryIntermolecular forceNuclear magnetic resonance spectroscopy010402 general chemistry01 natural sciences0104 chemical sciencesAnalytical ChemistryInorganic ChemistryCrystalMolecular geometryComputational chemistryX-ray crystallographyPhysical chemistryMoleculeSingle crystalSpectroscopyJournal of Molecular Structure
researchProduct

NMR structure determination of (11E)-trinervita-1(14),2,11-triene, a new diterpene from sexual glands of termites

2005

Graphical Abstract Full-size image; International audience; Female alates of Nasutitermes ephratae termites from Guadeloupe and Nasutitermes sp. from Brazil produce a diterpene hydrocarbon of the molecular formula C20H30 as the main component of their tergal gland secretion. Analysis of NMR, IR, and mass spectra of the diterpene led to a structure of (11E)-trinervita-1(14),2,11-triene. Based on a comparison with the published oxygenated trinervitane skeleton from termites we prefer the enantiomer with absolute configurations (4R,7S,8R,15S,16S). The suggested structure is supported by ab initio quantum chemical calculation of 1H and 13C chemical shifts for the optimized geometry of the molec…

0106 biological sciencesStereochemistryAb initio1H and 13C010402 general chemistry01 natural sciencesBiochemistry1H-RMN; 13C-RMNTerpene03 medical and health scienceschemistry.chemical_compoundDrug Discovery[SDV.IDA]Life Sciences [q-bio]/Food engineeringNasutitermesOrganic chemistryMoleculeDITERPENE HYDROCARBONPHEROMONE[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringGLANDE TERGALE FEMELLEDITERPENIQUE030304 developmental biologyFEMALE TERGAL GLANDchemistry.chemical_classification0303 health sciencesbiology010405 organic chemistryChemical shiftOrganic ChemistryTERMITEGeneral Medicinebiology.organism_classification0104 chemical sciences010602 entomologyHydrocarbonchemistryTRINERVITANEMass spectrumEnantiomerDiterpene
researchProduct

The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor

2021

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of …

0301 basic medicineBiFC bimolecular fluorescence complementationMST microscale thermophoresisPDIA1 protein disulfide isomerase family A member 1ApoptosisNEUROTROPHIC FACTOR MANFEndoplasmic ReticulumBiochemistryprotein-protein interactionMiceBimolecular fluorescence complementationUPR unfolded protein responseENDOPLASMIC-RETICULUM STRESSMesencephalonNeurotrophic factorsInsulin-Secreting CellsProtein Interaction MappingBINDINGCOMPREHENSIVE RESOURCEATF6unfolded protein response (UPR)PDIA6 protein disulfide isomerase family A member 6PPIs protein-protein interactionsEndoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsNPTN neuroplastinbiologyChemistryapoptosisunfolded protein responsedopamine neurons3. Good healthCell biologyGDNF glial cell line–derived neurotrophic factorIRE1-ALPHASBD substrate-binding domainendoplasmic reticulum stressMANF mesencephalic astrocyte-derived neurotrophic factorTm tunicamycinneuroprotectionResearch ArticleProtein BindingSignal TransductionGRP78Protein Disulfide-Isomerase FamilyCell SurvivalTH tyrosine hydroxylasePrimary Cell CultureSCG superior cervical ganglionProtein Disulfide-IsomerasesIRE1 inositol-requiring enzyme 1ER-STRESSER endoplasmic reticulum03 medical and health sciencesohjelmoitunut solukuolemaC-MANF C-terminal domain of MANFCSPs chemical shift perturbationsAnimalsHumansHSP70 Heat-Shock ProteinsNerve Growth FactorsNBD nucleotide-binding domainNMR nuclear magnetic resonanceMolecular Biology030102 biochemistry & molecular biologyBIPATF6Dopaminergic NeuronsGene Expression ProfilingBinding proteinneuronal cell deathDISSOCIATIONCell BiologyNEI nucleotide exchange inhibitorEmbryo MammalianadenosiinitrifosfaattiATPhermosolutmesencephalic astrocyte-derived neurotrophic factorprotein–protein interactionPERK protein kinase RNA-like ER kinaseHEK293 Cells030104 developmental biologyGene Expression RegulationChaperone (protein)Tg thapsigarginbiology.proteinUnfolded protein responseAP-MS affinity purification mass spectrometry1182 Biochemistry cell and molecular biologyGFP-SH SH-tagged GFPendoplasmic reticulum stress (ER stress)DA dopaminemesencephalic astrocyte-derived neurotrophic factor (MANF)proteiinitNeuroplastin
researchProduct

Dispersion from Cα or NH: 4D experiments for backbone resonance assignment of intrinsically disordered proteins

2020

AbstractResonance assignment of intrinsically disordered proteins is remarkably challenging due to scant chemical shift dispersion arising from conformational heterogeneity. The challenge is even greater if repeating segments are present in the amino acid sequence. To forward unambiguous resonance assignment of intrinsically disordered proteins, we present iHACANCO, HACACON and (HACA)CONCAHA, three Hα-detected 4D experiments with Cα as an additional dimension. In addition, we present (HACA)CON(CA)NH and (HACA)N(CA)CONH, new 4D Hα-start, HN-detect experiments which have two NH dimensions to enhance peak dispersion in a sequential walk through C′, NH and HN, and provide more accurate NH/HN ch…

0303 health sciencesChemical substanceChemistryChemical shiftIDPintrinsically disordered proteinresonanssi010402 general chemistryIntrinsically disordered proteinsAggregatibacter actinomycetemcomitans01 natural sciencesBiochemistryResonance (particle physics)bakteerit0104 chemical sciences03 medical and health sciencesCrystallographyBilRIproteiinitNMR-spektroskopiaDispersion (chemistry)Peptide sequenceresonance assignmentSpectroscopy030304 developmental biologyJournal of Biomolecular NMR
researchProduct

Carbon-13 chemical shifts of bicyclic compounds

1970

13C NMR absorption spectra of 50 bicyclic hydrocarbons, alcohols and ketones have been measured, in addition to some terpenes. The 13C chemical shifts are approximately additive for similar compounds and can be used for the determination of molecular structure; they differ for endo- and exo-isomers, just as in proton spectra. These quite regular and predictable 13C shift differences are much larger and are caused by the 1,4-nonbonded interaction between atoms heavier than hydrogen, not by magnetic anisotropy effects.

Absorption spectroscopyBicyclic moleculeHydrogenChemistryChemical shiftCarbon-13chemistry.chemical_elementGeneral ChemistryCarbon-13 NMRMagnetic anisotropyComputational chemistryOrganic chemistryMoleculeGeneral Materials ScienceOrganic Magnetic Resonance
researchProduct

Imaging features of adrenal masses

2019

Abstract The widespread use of imaging examinations has increased the detection of incidental adrenal lesions, which are mostly benign and non-functioning adenomas. The differentiation of a benign from a malignant adrenal mass can be crucial especially in oncology patients since it would greatly affect treatment and prognosis. In this setting, imaging plays a key role in the detection and characterization of adrenal lesions, with several imaging tools which can be employed by radiologists. A thorough knowledge of the imaging features of adrenal masses is essential to better characterize these lesions, avoiding a misinterpretation of imaging findings, which frequently overlap between benign …

Adenomalcsh:Medical physics. Medical radiology. Nuclear medicinemedicine.medical_specialtyAdenomalcsh:R895-920ReviewImaging modalitiesAdrenal massesMagnetic resonance imagingMedicineRadiology Nuclear Medicine and imagingAdrenal imagingAdrenalComputed tomographyNeuroradiologymedicine.diagnostic_testbusiness.industryMagnetic resonance imagingInterventional radiologymedicine.diseaseSettore MED/18 - Chirurgia GeneraleOncology patientsRadiologySettore MED/36 - Diagnostica Per Immagini E RadioterapiabusinessChemical shift imagingInsights into Imaging
researchProduct

Fatty replacement of bone marrow after radiation therapy for Hodgkin disease: Quantification with chemical shift imaging

1993

The authors studied the long-term fatty replacement of bone marrow in 23 patients who had received radiation therapy for Hodgkin disease, with T1-weighted magnetic resonance imaging and quantitative chemical shift imaging. T1-weighted images revealed a mostly homogeneous high-signal-intensity pattern, in contrast to the hypointense pattern of nonirradiated marrow. The degree of fatty replacement was objectively assessed with chemical shift imaging, comparing patients to age-matched healthy volunteers. The authors found an increase in relative fat signal of 37% in the thoracic spine and 34% in the lumbar spine. The relative fat signal of nonirradiated pelvic and femoral marrow was decreased …

AdultMalemedicine.medical_specialtyTime FactorsThoracic spinemedicine.medical_treatmentFatty replacementDiseaseBone MarrowmedicineHumansRadiology Nuclear Medicine and imagingmedicine.diagnostic_testbusiness.industryMagnetic resonance imagingImage EnhancementHodgkin DiseaseMagnetic Resonance ImagingHematopoiesisRadiation therapymedicine.anatomical_structureHomogeneousFemaleBone marrowRadiologyNuclear medicinebusinessChemical shift imagingJournal of Magnetic Resonance Imaging
researchProduct